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ln-situ diagnosis of chiller performance is an essential step for energy saving business. The 
main purpose of the in-situ diagnosis is to predict the performance of a target chiller. Many 
models based on thermodynamics have been proposed for the purpose. However, they have to 
be modified from chiller t o  chiller and require profound knowledge of thermodynamics and heat 
transfer. This study focuses on developing an easy-to-use diagnostic technique that is based on 
adaptive neuro-fuzzy inference system (ANFIS). The effect of sample data distribution on 
training the ANFIS is investigated. It is found that the data sampling over 10 days during 
summer results in a reliable ANFIS whose performance prediction error is within measurement 
errors. The reliable ANFIS makes it possible to prepare an energy audit and suggest an energy 
saving plan based on the diagnosed chilled water supply system. 
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: Input variable to a fuzzy inference sys- 
tem 

. Input variable to a fuzzy inference sys- 
tem 

: Bell-shaped membership function 
: A  set of continuous real-valued func- 

tions 

1. Introduction 

Centrifugal chillers with cooling capacity of  
larger than 200 RT (refrigeration tons) are inevi- 
table necessities for most of office buildings and 
factories such as clean rooms in semiconductor 
industry to remove cooling load generated from 
the buildings. The electric power consumed by 
such chillers occupies about 20% of nationwide 
peak electricity demand in Korea, for example 
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(Editorial Staff, 2000). Thus, it is expected that 
any degradation of chiller performance due to 
aging and negligent maintenance and the like 
lead to significant increase of nationwide energy 
cost as well as constructing more electricity po- 
wer plants. To prevent such losses, it is necessary 
to diagnose chiller performance accurately and 
regularly. An ideal diagnosis procedure requires 
a chiller to run at a standard rating condition, 
but it is impossible to have a chiller run at the 
specified condition, because cooling load is not 
controllable. As an alternative, the performance 
test at the standard rating condition has been 
replaced with an approach that combines ther- 
modynamic simulation models and extensive 
amount of experimental data to determine em- 
pirical coefficients employed in the simulation 
models (Trane, 2005). To make the alternative 
meaningful, the simulation models should be ac- 
curate enough. Enhancing the accuracy requires 
modeling the whole chilled water system in detail, 
which complicates the simulation models. Em- 
pirical relations employed in a simulation pro- 
gram are based on thermodynamics, heat transfer 
and experimental data. Because of the empirical 
features of the relations, model parameters are 
determined for each specific chiller product model 
after extensive amount of experiments. Therefore, 
any simulation work with such scope is possible 
only in world-leading chiller manufactures. In 
addition, it is a performance prediction program 
applicable only to specific chiller models of a 
manufacturer in concern. 

In contrast, from the point of view of custo- 
mers, what is needed is a performance diagnosis 
program that is simple and accurate enough to be 
applicable to all types of chillers. To make such 
diagnostic tool realizable, the following technical 
challenges have to be addressed. Firstly, the per- 
formance diagnosis should be completed within 
a few days, if possible, during low-demand sea- 
sons like autumn or spring. Secondly, the mea- 
surement procedure should be conducted in a 
non-intrusive way so that a chiller can provide 
its normal service without getting interrupted. 
Thirdly, a methodology should be established 
which extracts quasi-steady state data flora mea- 

sured ones. Lastly, a performance prediction pro- 
gram should be available which is capable of 
predicting chiller performance at a standard ra- 
ting condition. They will be addressed in the 
study with a special emphasis on proposing the 
following performance diagnostic tool. 

In a response to the need of such simple diag- 
nostic tool, some studies have been conducted to 
explore possible application of artificial neural 
network (Swider et al., 2002 ; Palau et al., I999). 
A virtue of artificial neural network is its capa- 
bility of inferring non-linear functional relation- 
ship between measured inputs and outputs with- 
out resorting to complex physical models. How- 
ever, identifying the structure of artificial neural 
network (ANN) requires many parameters and a 
lot of training data, and the learning time of ANN 
takes long in general (Jang, 1993). To overcome 
the shortcomings of ANN, this study suggests a 
performance prediction program based on the 
adaptive neuro-fuzzy inference system (ANFIS) 
that combines artificial neural network and fuzzy 
logic (Jang, 1993; Jang, 1991). 

2. Adaptive Neuro-Fuzzy Inference 
System (ANFIS) 

System modeling based on conventional ma- 
thematical tools (e.g., differential equations) is 
not well suited for dealing with ill-defined and 
uncertain systems. On the other hand, a fuzzy in- 
ference system employing fuzzy/f-then rules can 
model the qualitative aspects of human knowl- 
edge and reasoning processes without employing 
precise quantitative analyses. This fuzzy modeling 
or fuzzy identification, firstly explored system- 
atically by Takagi and Sugeno (1985), has found 
numerous practical applications in control, pre- 
diction and inference. However, there has been 
no systematic way to transform human knowl- 
edge or experience into the rule base and data- 
base of a fuzzy inference system. In addition, there 
is a need for effective methods of tuning the 
membership functions (MF's) so as to minimize 
the output error measure or maximize perform- 
ance index. In order to address the problems, Jang 
(1993) proposed a structure called an adaptive 
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neuro-fuzzy inference system (ANFIS) based on 
artificial neural network. 

in human recognition, the premise and conse- 
quent parts of fuzzy if-then rules are not defin- 
ed crisply but in linguistic expressions such as 
large or small. The if-then rules are fuzzified 
by replacing such linguistic expressions with 
fuzzy values associated with membership func- 
tions. They go through fuzzy inference operations, 
equivalently corresponding to logical reasoning 
in human recognition, and the inference reason- 
ing result is defuzzified and presented to an out- 
put. Among various types of fuzzy reasoning 
involved in the defuzzification, the one propos- 
ed by Takagi and Sugeno (1985) is employed 
in constructing ANFIS because its linear con- 
sequent part combination of inputs weighed by 
their consequence parts makes it possible to cor- 
relate quantitatively the premise and consequent 
parts, which is impossible in other reasoning 
types such as Memdani's (Memdani et al., 1983). 
The Takagi and Sugeno reasoning can be equi- 
valently expressed in artificial neural network 
whose capability of self-learning is to be exploit- 

ed in the study. Fig. 1 shows the comparison of 
Takagi-Sugeno type inference system and its 
equivalent neural network architecture. There- 
fore ANF1S can be interpreted as a special form 
of artificial neural network. Using a given input/ 
output data set, ANFIS constructs a fuzzy in- 
ference system whose membership function para- 
meters are tuned using either a back-propagation 
algorithm alone, or in combination with a least- 
squared method. This allows the fuzzy systems to 
learn from the data they are modeling. 

The parameters associated with the member- 
ship functions will change through the learning 
process. The computation of these parameters is 
facilitated by a gradient vector, which provides a 
measure of how well the fuzzy inference system is 
modeling the input/output data for a given set of 
parameters. Once the gradient vector is obtained, 
any of several optimization routines could be 
applied in order to adjust the parameters so as to 
reduce some error measure (usually defined by 
the sum of the squared difference between actual 
and desired outputs). ANFIS uses either back 
propagation or a combination of least squares 
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estimation and back-propagation for membership 
function parameter estimation. 

3. Experiment 

The test chiller for performance analysis is a 
centrifugal type with the cooling capacity of 

200 RT (refrigeration tons). It is one of  the 
three chillers commissioned in 1998 for the spec- 
ial test laboratory with clean room test facilities at 

the Korea Institute of  Science and Technology 

(KIST) in Korea. Fig. 2 shows one of  the chil- 
lers. The laboratory is a four-story building with 
the cooling area o f  6655.4 m 2. The chilled water 

produced from the chillers is supplied to 2 AHUs 

(air handling units) for thermal loads from clean 
room facilities, another 2 AHUs and FCUs (fan 
coil units) for general purpose labs and offices, as 
well as to the cooling units of some test equip- 

ment. The centrifugal chiller with 2 stage-com- 
pressors shows improved performance, compared 

to the one with a single stage, by expanding the 
high pressure refrigerant vapor at the condenser 
exit to a medium pressure between the first and 

second stages where the vapor o f  the refrigerant 

is separated from the liquid phase and sent to 
the evaporator and the liquid to the inlet of  the 
second stage. The chiller capacity can be varied 
by controlling the angle of IGV (inlet guide 
vane) that is installed at the inlet of  the com- 

pressors to throttle the flow of the refrigerant. 
The opening angle of IGV is controlled so that 

the outlet temperature of  chilled water is kept 

Fig. 2 One of the 200 RT turbo chillers under in- 
situ measurement 

constant regardless of varying cooling load. The 

coolant that takes heat from the condenser is 
circulated through the cooling tower to dissipate 

the heat to the atmosphere by means of evapora- 
tion cooling. 

Chillers in normal operation should not be 

interrupted by any work to install sensors. It 

means that the sensors should be installed in a 
non-intrusive way. So, temperatures of  working 
fluids flowing through pipes were measured by 

Pt 1,000 ~ RTD's (resistive temperature detec- 

tors) mounted on the outer surface of  the pipes 
after removing the insulating materials locally 
at the sensor mounting location. Flow rates o f  

the chilled water and the cooling water were mea- 
sured using an t, ltrasonic flowmeter mounted on 

the outer surface of  the pipes as well. Electricity 
consumption was measured with clamp-on type 
power meters. Data was sampled at every minute. 

The sensor signals of flowrate and temperature 
were collected with a data logger, and transferred 

to a PC along with raw data from power meters. 
An application program for data communica- 
tion, display and final processing was written in 

LabVIEW ~ of  National Instruments Co. 

4. Data Processing 

A prerequisite to construct a reliable ANFIS 
is the availability of sufficient amount of  training 
data distributed uniformly, in other words un- 

biased, over the domain of input variables. It is 
because the ANF1S infers the relationship be- 
tween the inputs and outputs only from the given 
data set without any prior knowledge. Therefore, 

how to precondition and process measured data 

is the most important step for constructing a 
reliable ANFIS. Regarding the preconditioning 

issue specific to the prediction of  chiller perform- 
ance in view of energy saving business, the fol- 
lowing three requirements should be resolved. 
One thing is that there should be sufficient num- 
ber of  unbiased performance data points, whose 

collection takes long time even up to a whole 
year depending on the scope of  work. The other 
is that processed data should be steady state 
values because chiller performance is defined 
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thermodynamically at steady state. Ideas to re- 

solve the requirements are proposed in the fol- 

lowing. 

A common practice of  conventional studies 

has been to pick out manually the data points 

which are judged to be close to steady state 

(Browne et al., 1998 ; Gordon et al., 1995 ; Bevene 

et al., 1994). Since it often takes several months, 

such a practice is plausible only to the realm of 

academic research. Considering that the purpose 

of  this study is to provide a practical tool for 

in-si tu diagnosis of chiller performance, an effi- 

cient method to collect the necessary training 

data set tbr a short period should be sought. A 

clue can be found from the following observa- 

tion : many thermodynamic-related studies inves- 

tigating experimental data under steady state to 

establish a model for chiller performance com- 

monly conclude that the inverse of  COP is pro- 

portional to the inverse of  cooling load Q as 

follows (Browne et al., 1998; Gordon et al., 

1995 ; Bevene et al., 1994). Here, COP is defined 

as the ratio of  cooling load to electricity supplied 

to a chiller. 

i W C,+C2Q, C,+c= (l) 
Q, 

filtering should be at least longer than 2 minutes. 

In this study, the time interval was varied from 5 

minutes to 60 minutes by 5 minutes to determine 

optimal one that is short, but doesn't  deteriorate 

quality of  quasi-steady state data. The interval 

swing test suggested that 10 minutes be the most 

plausible candidate, considering that it is about 

5 times the dynamic response time and that its 

averaged data set is quite similar to the ones 

averaged for longer intervals. Part of  the averag- 

ed data, however, is still different fi'om the rest, 

because the data averaged during starts and stops 

quite often deviates from steady state ones. To 

exclude such unsteady data, the following criteria 

were applied : 

(1) When outlet temperature of  chilled water 

goes beyond the range of  the design operation 

temperature (for the test chiller, 7.5*(2) +0.5"C or 

so. 
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This empirical finding provides an essential cri- 

terion to filter steady state data fi'om raw data 

measured from chillers in operation. The next 

issue is how to low-pass filter the raw data. The 

raw data itself contains high frequency noises and 

transient load effects. Thus, the data should be o.55 

filtered using an appropriate  averaging time in- o.5o 

terval. Since a chiller is in normal operation and 
0.45 

its cool ing load also changes incessantly, it is 
o 0.40 

not possible to obtain ideal ly steady state data as 

desired in research test facilities. Instead, quasi- 0.35 

steady state data can be obtained by time-avera- 0.3o 

ging raw data. In order to extract as many quasi- 0.25 

steady state data as possible from measm'ements 

conducted during a short period, average time 

interval should be short. According to the ex- 

perimental results of  Browne et al.(2000), the Fig. 3 

first-order dynamic response time of  the 200RT 

single-screw type chiller was about 2 minutes. 

It means that the averaging time for low-pass 
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(2) When averaged data deviates from the 
linearity of the empirical thermodynamic relation 
(1). 

Fig. 3 represents the relationship between 
COP and cooling load for i0 minutes-averaged 
data logged during the four days (June pt, 3rd, 5~ 
and 7th). Fig. 3(a) shows all the data obtained 
during the period, and Fig. 3(b) shows only the 
data that meet the criteria of  quasi=steady state. 

5. ANFIS-Based Prediction Model 
of Chiller Performance 

According to the studies to refine the empiric- 
al relation (1), it is closely related with coolant 
inlet temperature Tcwi and chilled water outlet 
temperature T~,o. On the other hand, coolant 
outlet temperature and chilled water inlet tem- 
perature, which are also important as much, are 
generally dismissed, because their effects are 
already reflected in cooling load and the effici- 
ency of heat exchangers. Therefore, the fuzzy 
model based on ANFIS is assumed to take the 
following form : 

I/COP=,f(I/Q,, T¢~, T,,,o) (2) 

More input parameters could be added, but it 
will increase computational burden in geometric 
progression. So it is recommended to keep a 
minimal number of  input variables as far as the 
effect of  an additional input variable is marginal. 
The prediction model of  this study is intended 
to be expressed in the parameters that can be 
measured with ease on the site. In that respect° 
the relation (2) is appropriate to the view of the 
current study. The input variables in Equation 
(2) constitute x and y in Fig. l(a).  For fuzzy 
reasoning, a membership function such as Al, 
.42, Bt, and B, in Fig. I (a) is needed. It should 
satisfy the following requirements. 

For the domain D, which is a compact space 
of N dimensions, the fuzzy inference system ~', 
a set of  continuous real-valued functions, has 
unlimited approximation power to match any 
nonlinear functions arbitrarily well on a compact 
set, if it satisfies the Stone-Weierstrass theorem 
(Kantorovich et al., 1982) stated below. 

Identity Function: The constant f ( x ) =  I is in 

Separability : For any two points xL#:xz in D, 
there is an f in ~ such that f (xt) : # f  (x2). 

Algebraic Closure: I f  and are any two func- 
tions in ~r then fg  and af+bg  are in ~rfor 
any two real numbers a, b. 

For the first and second criteria, it is trivial to 
find simplified fuzzy inference systems that satisfy 
them. However, in order to meet the third criteri- 
on, the membership function should be bell- 
shaped (lang, 1993). It could be either Gauss/an 
membership function or the following bell func- 
tion with three tuning parameters. 

l . ( x )  : '  X (3) 

In general there is no specific rule for construc- 
tion of an AHFIS to approximate given system 
characteristics. In this study, the bell function 
(3) is preferred because it provides more degrees 
of freedom to shape a membership function. 
The number of input variables is 3, as suggest- 
ed by Equation (2), and each variable is set 
to have two membership functions. When three 
membership functions were allowed to each in- 
put variable, the resulting ANFIS was found to 
tend to over-fit the chiller performance. Since 
the relationship between COP and input vari- 
ables was nearly in linear proportion according 
to the empirical relations based on thermo- 
dynamics (Browne et al., 1998; Gordon et al., 
1995; Bevene et al., 1994, 2000), two member- 
ship functions were assigned accordingly to each 
input variable, and thereby the errors between 
the model and the experiment could be reduced, 
compared to the case of three membership func- 
tions. The resulting ANFIS architecture is shown 
in Fig. 4. 

In Fig. 4, the number of fuzzy rules is 2s=8 
and the number of nodes is 34. The number of 
nonlinear parameters associated with the mem- 
bership functions of the premise part (nonlinear 
bell function) is 6×3=18 ,  and the number of 
linear parameters in the consequent pan by the 
Sugeno-type linear inference engine is 8 ×4=32.  
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Training ANFIS means to determine optimal 

values of the 50 parameters from a given data 
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Fig. 4 The ANFIS architecture for the prediction of 
chiller performance 

set. The hybrid training algorithm employed in 

ANFIS determines linear parameters in the con- 

sequent part first by the least square method, 

and then back-propagates the slope of the errors 

calculated by the linear parameters to the premise 

part where the nonlinear parameters are calcu- 

lated by the gradient descent technique. The cal- 

culation procedure is repeated until either the 

final errors meet design criteria or the number of 

iterations reaches a set number. 

6. Training ANFIS 

Although it is ideal to have an unbiased train- 

ing data set that is distributed uniformly over the 

domain of input variables, it is seldom the case 
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in reality. Instead, there should be a criterion to 
build a data set that is enough to construct a 

reliable ANFIS. The criterion specific to chiller 
performance will be set up empirically by com- 
paring the performance of ANFIS with respect 
to training data sets. In view of  ESCO, it is pre- 

ferred to diagnose chiller performance during a 
low-demand season such as spring. During such 
seasons, however, cooling load on the evaporator 
side is too low for a chiller to go through all the 

range of  loads. Without a data set distributed 
over the whole spectrum of the chiller load, it is 
impossible to obtain a reliable ANFIS as will be 

exemplified later. In this study, the criterion to 

build a feasible data set is investigated using the 
data sets collected from June through September 

of Year 2000 at Seoul in Korea. 
Fig. 5 (a) shows the fitting performance of the 

ANFIS model trained with the data set collect- 

ed during the four days of  early June. It is seen 
that the approximation errors are within __-5%. 
Thus the ANFIS is the best fit, considering that 

the measurement error analyzed by the Klein and 
McClintock's method, as stated before, is about 
5%. Using the trained ANF1S model, the chiller 
performance was predicted for the period of  June 

through September and compared with the ex- 
perimental data as shown in Fig. 5(b). It is ob- 
served that the prediction errors are sort of higher 

than +--5% in general and increase significantly at 

the region of  high cooling load (represented by 
high COP). Comparison of  Fig. 5(a) and (b) 
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reveals that the increase of  errors in the high load 

region is ascribed to the poor prediction of  the 
ANFIS trained with insufficient data in the high 

load region as manifested in Fig. 5(c) and (d). 
Fig. 5(c) and (d) show the distribution of the 
training data over the domain of  input variables. 
The deficiency of  high load data points results 

from the fact that the chiller was rarely operated 
at high loads since cooling load demand was low 
in early June. To confirm the quality problem of 
training data set, the ANFIS  were trained at this 
time with the data set obtained during 18 days of  

August. And its prediction performance is shown 
in Fig. 6. Fig. 6(a) represents the fitting per- 
formance of  the ANFIS which is within + 5 %  
In this case, however, the training data shows 

relatively uniform distribution over tile cooling 
load or equivalently COP, compared to the case 
of  Fig. 5(a). As expected, the ANFIS trained 
with the well-distributed data set resulted in the 
superior prediction performance of Fig. 6(b) in 

which the prediction errors for the four-month 
data set are well within 5%. The relatively uni- 
form distribution of the training data over the 
input domain in Fig. 6(c) and (d) corroborates 
the argument. Expecting a training data set that 
shows ideally even distribution over the domain, 

however, is not possible in chillers, because they 
are internally constrained to behave in a certain 

fashion, for example to control chilled water out- 

let temperature. The distribution pattern shown in 

Fig. 6(c) and (d) reflects such temperature con- 
trol efforts by the chiller controller. Therefore, a 
prior settlement to construct a reliable ANFIS is 

to identify such biased pattern of  data distribu- 
tion. Once it is found as in this study, it could be 

applied to similar kind of chillers because they 
may present similar biased behavior. To confirm 
the observation, several cases were investigated 
for the data sets during June through September. 
The results are shown in Figs. 7 to 9. 

Investigation of  Fig. 5 through 9 reveals the 
following. As far as training data are collected 

enough to represent the whole spectrum of cool- 
ing load, the ANFIS performance becomes reli- 
able, as is the case in Figs. 6, 7 and 8. On the 

other hand, when data points al~e not sufficient at 
high load as in Figs. 5 and 9, the ANFIS  becomes 
less reliable, in both cases, biased training data 
sets themselves do not become an issue, because 

they are all subject to the same biased condition 
caused by the same chiller controller. 

The development of  internet technology ma- 
kes it possible to monitor the progress of data 
acquisition in a remote location and evaluate the 
quality of  the ta'aining data set. Acquired data 
are averaged over 10 minutes and accumulatively 
plotted against COP and input parameters until 
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the data points are spread out evenly over the 
range of load in interest. Accumulation of data 
sets over many chillers would lead to the creation 
of  a reliable algorithm that will automate the 
process of training data acquisition. 

7. Pred ic t ion  of  Chi l ler  P e r f o r m a n c e  
wi th  an A N F I S  Mo de l  

The chiller performances predicted by the 
ANFIS are now compared at the standard rating 

condition set by Korea Industry Standard (1985). 
The details are specified in Table 1. 

Fig. 10 shows the comparison of pertbrmances 

at the condition predicted by the ANFIS  train- 
ed with the data sets shown in Fig. 4 through 8. 
As expected, the poor ANFISs of Figs. 5 and 10 
also led to different performance prediction at 
the standard rating condition, compared to the 
others. The performance curves predicted by the 
reliable ANF1S of  Figs, 6, 7 and 8 were found 
to be in good agreement with the experimental 
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T a b l e  1 Refrigerator rating condition set by Korea 
Industry Standard 

Chdled water Cooling water 
temperature (7~C) temperature (7~D) 

Operation 
In Out In Out 

Full load 12 7 32 37 

Part load * 7 * * * 

• The flow rates are to be held eonstan at full load 
values for all part load conditions 
• * The temperature should vary linearly from 32 7 

q) C to 7(~ C for 100% to 0% load 
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Fig. 10 Comparison of COP predicted at the stand- 
ard rating condition according to ANFIS 
trained over June through September 2000 

data that were under steady state at the standard 

rating condition. The meaning of  the performance 

curve in Fig. 10 is quite straightforward. The 

predicted COP can be directly compared with 

those of  other comparable chillers in view of  chil- 

ler diagnosis. And the COP also can be used to 

estimate energy cost to remove cooling load from 

a target building. 

8. Conclusions 

The merits of  the constructed A N F I S  are lar- 

gely two-fold.  Firstly it can be used as a simu- 

lation model of  the chiller under diagnosis to 

estimate its operation cost. Secondly, it cab be 

applied as a diagnostic "tool to determine whether 

the chiller needs overhaul for energy saving or 

not. From the study to develop the A N F I S  algo- 

rithm for the prediction of chiller performance, 

the following conclusions were obtained : 

(!)  It is possible to extract quasi-steady state 

data from the chiller in normal operation by 

considering the empirical knowledge of opera- 

tion ranges of  chiller water temperatures and the 

linear relationship between I / C O P  and l/Qe. 
And the averaging time interval was found to be 

at least larger than 10 minutes. 

(2) How to design the structure of  the A N F I S  

should be considered in conjunction with the 

empirical knowledge abut the system in concern. 

The appropriate number of  fuzzy rules per in- 

put was two from the behavior of the empirical 

thermodynamic relation. More than 2 led to over-  

fitting tendency of  the experimental data. 

(3) Training data set is inevitably biased over 

the input domain due to the constraints imposed 

on a chiller, for example to control temperatures. 

However, the influence of the bias on the A N F I S  

training is mitigated from the observation that the 

same bias is applied to all loads. 

(4) It is suggested that the data collection 

be made at least over 10 days during summer. 

During the seasons other than summer, there exist 

increasing chances of missing data points in the 

high load region, which will deteriorate the reli-  

ability of  the trained ANFIS.  For  a well- trained 
ANFIS,  the prediction error is within -I-5% that 

is comparable to measurement error bounds. 
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